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✓ Visibility :

✓ Coherence factor : uncalibrated constrast of the fringes

✓ Transfer function : ratio of expected visibility to measured coherence factor

✓ FTS : Fourier Transform Spectrometer 
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Expression of the FLUOR interferogram in the monochromatic case:

The κ matrix is estimated by blocking alernatively one of the beams of FLUOR 
and recording the signals in the unblocked photometric and two 
interferometric channels
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Principle of the photometric calibration:

Principle of the contrast estimation:

The fringe contrast is computed by integrating the spectrum

To avoid bias of the contrast modulus estimate by noise, the integration is 
performed on the power spectral density
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Polychromatic case:

Modulated part of the interferogram:
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Computation of coherence factorsComputation of coherence factors
1. Estimate κ matrix: coefficients are determined by least-square fits of 

interferometric channels by photometric channels

2. Estimate photometric signals: signals are filtered by an optimum 
Wiener filter to minimize rms fluctuations but keep turbulent 
fluctuations

PA(x)

PB(x)

Fourier

Transform
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Computation of coherence factorsComputation of coherence factors
2. Derive the turbulence-corrected interferogram:

3. Estimate processed noise PSD:

Comment: the photon noise PSD should be subtracted too. It was not the 
case at the time of the R Leo observations because the photon bias was 
far below noise
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Computation of coherence factorsComputation of coherence factors

4. Compute squared coherence factor:

Integrate corrected interferogram PSD

Subtract integrated processed noise PSD

That's it! You have computed the estimate of the squared coherence factor of 
one scan in one interferometric channel
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Final estimate of the coherence factorsFinal estimate of the coherence factors
Squared coherence factors are computed for each scan per interferometric channel

They define a statistics (histogram) from wich a standard deviation is derived

Eventually one gets: 

For more details on this algorithm see: 
V. Coudé du Foresto et al.,  Astron. Astrophys. Suppl. Ser. 121, 379-392 (1997)
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What needs to be calibrated?What needs to be calibrated?

Sources of coherence losses:

- polarization mismatches :
- axes rotation
- axes differential delay

- slow thermal drifts
- turbulence?

- differential piston?
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Principles of the calibrationPrinciples of the calibration

Calibrator 1 Source 1 Calibrator 2

observing time

Link 1

Calibrator 3 Source 2 Calibrator 4

Link 2

Observation Blocks (OB)
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Principles of the calibrationPrinciples of the calibration

• 1 OF = 1 set-up
– same night
– same detector parameters (frame rate, number of frames, ...)
– same filter...

• Principle : follow slow coherence loss fluctuations

Calibrator 1 Source 1 Calibrator 2

observing time

Link 1

Calibrator 3 Source 2 Calibrator 4

Link 2

Observation Blocks (OB)

Observation File (OF)
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StepsSteps
1. Derive calibrator's expected visibility

usually a uniform disk diameter is used to predict visibility at the 
spatial frequency S

2. Derive instantaneous transfer function for each channel

3.  Interpolate transfer function at time when source was observed

4. Calibrate single channel visibility for science target 
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At this point, we have derived visibilities for each channel

Before deriving the final visibility estimate the important issues of 
associated error bars and correlations have to be looked in details

channel 1

channel 2
sources

T1
2 (t)

T2
2 (t)
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Propagation of errorsPropagation of errors

Sources of errors (1σ error bars):
- errors on coherence factors (detector noise, photon noise, piston 
noise)
- errors on the diameter of calibrators

Propagated errors:
- error on squared transfer functions:       ratio of gaussian variables

the error is computed by estimating the 67% confidence interval of the 
random variable 

- error on single-channel interpolated transfer functions:
the interpolation is equivalent to estimating the transfer function at τ by a 

least-squares fit. The error on the interpolated T is derived by varying a 
χ2.
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Propagation of errorsPropagation of errors
At this point, two visibilities V1

2 and V2
2 and their 1σ errors have been derived

These two estimates are not independent and part of the noise is correlated in the 
two channels:

- errors on calibrators diameters
- errors generated by seeing (photometric calibration, piston)

These correlations need to be taken into account for all the random variables 
considered so far.

The current output of the calibration procedure is therefore:
- two squared visibilities and associated errors: 
- correlation factor:

V1
2, V2

2 ,σ1, σ2
ρ12
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Propagation of errors 
and final visibility estimate

Propagation of errors 
and final visibility estimate

The final visibility estimate is obtained by minimizing the quantity:

At minimum we have the following relations yielding the final visibility estimate 
and error:
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Comment:

correlations between visibilities recorded at different times, with a 
different baseline,..., also have to be taken into account for model 
fitting.

In this case the (possible) correlation is due to the use of common 
calibrators (the expected visibilities are then correlated)

It is therefore necessary that the data reduction program outputs numbers 
necessary to compute the correlation a posteriori.
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Have visibilities been well estimated?Have visibilities been well estimated?
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The calibration may not always be perfect for several reasons:

- gaussian statistics assumption fails

- vibrations
(visit museum of horrors!)

- too large piston fluctuations
- a visitor has been too curious and has touched the fibers
- bad genius of astronomical interferometry takes special care of you!
- others we still don't understand ...
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Tools are needed to objectively select visibility points in order to avoid 
this:
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Selection rules:
-1. reject interferograms with vibrations (can be done during observations 

before saving an OB), sudden spikes, strange features ...
-2. reject batches with skew and bias of µ2 distributions over certain 

limits (default values: skew=3σ, bias=2σ)
-3. reject visibilities for which the two channel χtc

2 is larger than 3:
the two estimates are not compatible within 3σ
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Selection rules (continued):
- 4. reject visibilities for which transfer function has fluctuated by 
more than x σ

These rules can be more or less stringent and can be adaptated depending 
on the science goal to achieve:

- very stringent for programs requiring high confidence and accuracy
- stellar pulsation (Mira stars, Cepheids)
- detection of surface features
- direct exoplanet detection: precision level required few parts in 

few 10,000
- relaxed for easy programs (ex: diameter measurement)

Last rule: plot and fit visibilities only after pre-defined rules have been applied!
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Part of the calibration algorithm and data selection procedure (except for 
the analysis of correlations) has been published in: 

G. Perrin et al., Astronomy and Astrophysics 331, 619-626 (1998)

The analysis of correlations should be published soon as well as the 
algorithm to remove the photon noise bias. 
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You are ready for Lab Session Part II!
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